реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

Предполагалось, что основной раздел программы, касаю-

щийся секвенирования всего генома, то есть выяснения первич-

ной последовательности всей молекулы ДНК одной клетки чело-

века длиной около 1,5 метров, состоящей из 3.5х10!9 нуклео-

тидов, будет завершен уже к 2 005 году. Однако, серьезные

технические усовершенствования этого трудоемкого процесса,

его автоматизация и резкое снижение себестоимости (от 1$ США

за один шаг в 1990г. до 0,2$ в 1995г.) позволяют надеяться,

что эта гигантская молекула, несущая информацию о всей прог-

рамме индивидуального развития человека и его эволюции будет

полностью расшифрована уже к 2 000 году ! (Marshall, 1995).

Естественно, что в итоге этой работы будут идентифици-

рованы и все гены человека, то есть будет точно определено

их число, взаиморасположение на генетической карте и струк-

турно-функциональные особенности. Предполагается, что осу-

ществление этого проекта, помимо колоссальных теоретических

обобщений для фундаментальных наук, окажет огромное влияние

на понимание патогенеза, предупреждение и лечение

наследственных болезней, значительно ускорит исследование

молекулярных механизмов, лежащих в основе развития очень

многих моногенных нарушений, будет способствовать более эф-

фективному поиску генетических основ мультифакториальных за-

болеваний и наследственной предрасположенности к таким широ-

ко распространенным болезням человека как атеросклероз, ише-

мия сердца, психиатрические и онкологические заболевания.

ГЛАВА X.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ

МОНОГЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 10.1. Хромосомная локализация и принципы класси-

фикации генов наследственных болезней.

Раздел 8.1 Хромосомная локализация и принципы классифи-

К настоящему времени на хромосомах человека картирова-

но около 800 генов, мутации которых приводят к различным

наследственным заболеваниям. Количество моногенных заболева-

ний, для которых известна локализация контролирующего гена,

еще больше и приближается к 950 за счет существования ал-

лельных серий, то есть групп болезней, клинически сильно от-

личающихся друг от друга, но обусловленных мутациями в одном

и том же гене (см.Глава IV). Для всех этих заболеваний прин-

ципиально возможна пренатальная диагностика с использованием

косвенных методов молекулярного анализа (см.Главу VII).

Более половины картированных генов клонировано и оха-

рактеризовано методами молекулярного анализа. Для каждого из

этих генов описаны мутантные варианты среди соответствующих

групп больных, причем количество идентифицированных аллелей

в разных генах может колебаться от одного до нескольких со-

тен (см.ниже). Молекулярное генотипирование мутации позволя-

ет проводить прямую пренатальную диагностику соответствующе-

го наследственного заболевания в семьях высокого риска

(см.Главу VII).

Число генов наследственных болезней, локализованных на

каждой хромосоме приведено на Рис. 10.1. В среднем, на каж-

дой из них к 1995г. идентифицировано около 30 таких струк-

турных генов. Обращает на себя внимание неравномерный харак-

тер распределения этих генов. Так, хромосомы 1 и 2 имеют

примерно одинаковые размеры (хромосома 2 даже несколько

крупнее), однако, число уже картированных генов, связанных с

наследственными заболеваниями, на хромосоме 1 в 3 раза мень-

ше, чем на хромосоме 2. Наибольшее число таких генов (больше

100) картировано на Х-хромосоме. Это, по-видимому, можно

объяснить гемизиготным проявлением мутаций генов Х-хромосомы

в компаунде гоносом ХУ у мужчин. Вместе с тем, анализ приве-

денных данных (Рис. 10.1) свидетельствует и о феномене раз-

личной насыщенности разных хромосом структурными генами. На-

ибольшая плотность структурных генов свойственна хромосомам

1, 3, 7, 9, 17, 22, Х. Значительно меньшая - хромосомам 2,

13, 18, 21, У (Antonarakis, 1994). Неслучайно, дисбаланс не-

которых из хромосом 2-й группы часто совместим с постнаталь-

ным развитием (синдром Дауна - трисомия 21; синдром Эдвардса

- трисомия 18; синдром Патау - трисомия 13). По-видимому,

это связано со сравнительно низкой плотностью структурных

генов в этих хромосомах, а также с отсутствием в них генов,

контролирующих ранние стадии развития. Напротив, сравнитель-

но слабая насыщенность известными генами хромосом 2 и 15 в

сочетании с редкостью их дисбаланса даже в абортном материа-

ле, может рассматриваться в пользу наличия в этих хромосомах

"ранних генов", контролирующих начальные стадии онтогенеза

человека: гаметогенез, ранний эмбриогенез. Мутации таких ге-

нов отметаются селекцией уже на этих ранних стадиях, а пото-

му не обнаруживаются постнатально. Стремительный рост даных

о генетической информации, заключенной в каждой хромосоме,

распределении в ней структурных и регуляторных генов, их

взаимодействии с надмолекулярными структурами хромосом (ге-

терохроматином), межхромосомных взаимодействиях и феномене

геномного импринтинга открывает широкие возможности на новом

методическом и концептуальном уровне подойти к проблеме хро-

мосомного (геномного) контроля ранних стадий развития чело-

века - основной проблемы цитогенетики развития млекопитающих

(Баранов, 1984; 1990; 1992; Dyban, Baranov, 1987).

Другое положение, которое следует напомнить в вводной

части этой главы касается специфичности мутационных повреж-

дений каждого структурного гена. Как указывалось ранее

(см.Глава V), несмотря на наличие общих закономерностей в

мутационных процессах, спектр мутаций для каждого гена, рав-

но как и сами структурные гены - уникальны. Причины этой

уникальности кроются в особенностях первичной структуры ДНК

каждого гена, в частности, обогащенности CG нуклеотидами,

его размерах, наличии прямых и обращенных повторов, присутс-

твии внутри гена ДНК последовательностей, гомологичных вне-

генным участкам, что может приводть к нарушениям процессов

рекомбинации в мейозе и.т.д. Для каждого идентифицированного

гена, мутации которого приводят к наследственным заболевани-

ям, разработаны эффективные методы молекулярной диагностики,

как правило, направленные на генотипирование наиболее частых

мутаций этого гена. Реже для этих же целей используется неп-

рямой метод диагностики с помощью молекулярных маркеров

(см.Глава YII).

Цитогенетические карты представляют собой один из спо-

собов однозначной и обьективной систематизации генов. Для

практических целей медико-генетического консультирования и

дифференциальной диагностики моногенных заболеваний подобная

классификация не всегда удобна, так как при составлении карт

генов никак не учитывается информация об особенностях коди-

руемых генами продуктов или о фенотипическом проявлении му-

тантных аллелей. В медицинскихх целях черезвычайно важно

иметь представление о группах генов, кодирующих функциональ-

но и структурно родственные белки, или контролирующие забо-

левания со сходной клинической картиной. Однако, далеко не

всегда классификация по клиническим параметрам может быть

проведена однозначно по ряду причин. Во-первых, большое чис-

ло моногенных наследственных заболеваний носит синдромальный

характер и, зачастую, не удается выделить группу ведущих

клинических симптомов. Во-вторых, многие болезни отличаются

высоким уровнем фенотипической гетерогенности, связанной ли-

бо со спецификой мутационных повреждений, либо с различиями

в окружающих условиях и/или в генетическом фоне (см. Главу

IV). Кроме того, многие болезни, вызванные мутациями в раз-

ных генах, могут протекать сходным образом и, основываясь

только на клинических симптомах, трудно провести дифференци-

альную диагностику подобных заболеваний. Поэтому наиболее

обьективная классификация моногенных наследственных болезней

с известными первичными биохимическими дефектами проводится

на основе классификации соответствующих генопродуктов с уче-

том их участия в определенных метаболических циклах.

В данной заключительной главе мы попытаемся проиллюст-

рировать на ряде примеров теоретические положения, изложен-

ные в предыдущих главах. В качестве примеров будут приведены

краткие молекулярно-генетические характеристики некоторых

классов хорошо изученных и достаточно распространенных моно-

генных наследственных болезней. Большинство из этих завболе-

ваний в той или иной мере изучаются в соответствующих науч-

ных центрах России, а их диагностика в медико-генетических

центрах страны проводится не только по клиническим парамет-

рам, но и с обязательным учетом результатов молекулярного

и/или биохимического обследования.

Раздел 10.2. Метаболические дефекты лизосомных фермен-

тов. Болезни накопления.

В качестве примера наиболее полно и всесторонне изучен-

ных заболеваний мы выбрали группу болезней, обусловленных

наследственными дефектами лизосомальных гидролаз. В Табл.

10.1 представлены данные о наследовании и встречаемости ли-

зосомных болезней, хромосомной локализации и структуре соот-

ветствующих генов, кодируемых ими продуктах и идентифициро-

ванных мутантных аллелях. Даны также ссылки на основные ра-

боты по картированию соответствующих генов, их клонированию

и идентификации мажорных (то есть наиболее частых) мутаций.

Таблица составлена по материалам Каталога наследственных бо-

лезней В. МакКьюсика 1994 г.(McKusik, 1994) и дополнена не-

обходимыми литературными данными.

Таблица 10.1 Молекулярно-генетические основы лизосомных

болезней

( N) - примечания, представленные в конце

таблицы).

---------------------T--------------T-----------------------T---------------

---------¬

Синдромы 1), номер по¦Встречаемость,¦Типы и количество му- ¦Литература

¦

МакКьюсику; хромосом-¦белок, размеры¦таций 5), мажорные мута¦(локализация и

структура¦

ная локализация; ген ¦в аминокисло- ¦ции -в скобках указаны

¦генов,клонирование кДНК,¦

2);размеры 3); экзоны¦тах 4) ¦частоты аллелей у б-ных¦идентификация

мутаций). ¦

---------------------+--------------+-----------------------+---------------

---------+

N-ацетил-альфа-D-га- ¦Очень редко 6)¦Миссенс - 2: ¦Wang et

al.,1990 ¦

лактозаминидазы деф.;¦ ¦E325K -Шиндлера болезнь¦Desnick, 1991

¦

Шиндлера;Канзаки б-нь¦Ацетилгалактоз¦R329W - Канзаки болезнь¦

¦

104170; 22q11; ¦аминидаза,аль-¦ ¦

¦

NAGA.2; кДНК-2.2 кб ¦фа-N-; 411¦ ¦

¦

---------------------+--------------+-----------------------+---------------

---------+

Ангиокератома Фабри; ¦1 : 40 000 ¦Миссенс -31;делеции (от¦ Bishop et

al.,1988 ¦

дистопический липидоз¦ ¦1 н. до неск.экз.) -11;¦ Kornreich et

al.,1990 ¦

301500; Xq22; ¦Галактозидаза ¦сплайс.-5 (из них 3 с ¦ Davies et

al., 1993 ¦

GLA.50; 12 кб, 7 экз.¦альфа; 429¦дел.экз); инс.,дупл.-3 ¦ Eng et

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.