реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

мутантный ген или его мутированный фрагмент на нормальный, а

вести коррекцию путем введения в организм пациента полноцен-

но работающего гена (обычно его кДНК). Во-вторых, несмотря

на решающие успехи генной инженерии последних лет, исследо-

вания по геннной терапии у человека осуществляются исключи-

тельно на соматических тканях, в которых в норме происходит

экспрессия дефектного гена. Генная терапия на уровне половых

и зародышевых клеток человека ввиду возможных серьезных пос-

ледствий для генофонда человечества представляются весьма

проблематичной и на данном этапе наших знаний - малореаль-

ной. И наконец, в-третьих, уже разработанная и применяемая

на практике методология генной терапии оказалась пригодной

для лечения не только моногенных наследственных заболеваний,

но и таких широко распространенных болезней, какими являются

злокачественные опухоли, многие виды тяжелых вирусных инфек-

ций, включая спид, сердечно-сосудистые и другие заболевания.

Учитывая эти обстоятельства, генную терапию на современном

этапе можно определить как лечение наследственных, онкологи-

ческих, некоторых инфекционных (вирусных) и других заболева-

ний путем введения генов в клетки пациентов с целью направ-

ленного изменения генных дефектов, либо придания клеткам но-

вых функций (Culver, 1994). Первые клинические испытания ме-

тодов генной терапии были предприняты 22 мая 1989г. с целью

генетического маркирования опухоль-инфильтрующих лимфоцитов

в случае прогрессирующей меланомы. Маркированные прокариоти-

ческим геном neo, Т-лимфоциты были устойчивы к неомицину и

могли быть легко отселектированы в культуре, что позволило

детально проследить их судьбу в кровотоке и избирательное

накопление в опухолях (подробней см. 9.5).

Первым моногенным наследственным заболеванием, в отно-

шении которого были применены методы генной терапии, оказал-

ся наследственный иммуннодефицит, обусловленный мутацией в

гене аденозин-дезаминазы. 14 сентября 1990г.в Бетезде (США)

4-х летней девочке, страдающей этим достаточно редким забо-

леванием (1 : 100 000), были пересажены ее собственные лим-

фоциты, предварительно трансформированные ex vivo геном ADA

(ген ADA + ген neo + ретровирусный вектор). Лечебный эффект

наблюдался в течение нескольких месяцев, после чего процеду-

ра была повторена с интервалом 3-5 месяцев (Anderson, 1992;

Culver, 1994). В течение 3-х лет терапии в общей сложности

проведено 23 внутривенных трансфузии ADA-трансформированных

Т-лифоцитов без видимых неблагоприятных эффектов. В резуль-

тате лечения состояние пациентки (Ашанти В. ДеСильва) нас-

только улучшилось, что она смогла вести нормальный образ

жизни и не бояться случайных инфекций. Столь же успешным

оказалось и лечение второй пациентки с этим заболеванием

(подробней см. раздел 9.5). В настоящее время клинические

испытания генной терапии этого заболевания проводятся в Ита-

лии, Франции, Великобритании и Японии.

Другие моногенные наследственные заболевания, в отноше-

нии которых уже имеются официально разрешенные протоколы и

начаты клинические испытания, касаются семейной гиперхолес-

теринемии (1992); муковисцидоза (1993); гемофилии В (1992);

болезни Гоше (1993). В отношении многих других заболеваний

медицинские протоколы клинических испытаний находятся в ста-

дии утверждения (см. раздел 9.5.). К 1993г. только в США к

клиническим испытаниям генно-инженерных конструкций на чело-

веке было допущено 53 проекта (Culver, 1994). К 1995г. в ми-

ре число таких проектов возросло до 100 и более 400 пациен-

тов было непосредственно вовлечено в эти исследования (Hodg-

son, 1995). Подавляющее большинство таких проектов (86) ка-

салось лечения онкологических заболеваний, а также спида.

Таким образом, от опытов на животных и теоретических

построений 80-х годов уже в 1990 году удалось приступить к

реальному лечению моногенных заболеваний, число которых

стремительно нарастает. Естественно, что подобные революци-

онные перемены могли возникнуть только в результате решающих

успехов молекулярной биологии в картировании генов, мутации

которых приводят к наследственным заболеваниям (см.Главу

III), выяснении молекулярной природы этих мутаций (см.Главу

IV), успехов в секвенировании и клонировании генов (см.Главы

I и II), создании генно-инженерных конструкций (см.Главу

II), отработки и совершенствования методов их доставки

(см.ниже). Следует также подчеркнуть, что качественный ска-

чок в области генной терапии, когда сам ген стал рассматри-

ваться как лекарственный препарат, стал возможен благодаря

тому, что предшествующие экспериментальные и клинические

исследования доказали безопасность генной терапии.

Вместе с тем, и в сегодняшних исследованиях по генной

терапии необходимо учитывать, что последствия манипулирова-

ния генами или рекомбинантными ДНК in vivo изучены недоста-

точно. Следует помнить, что введение в организм человека

последовательностей ДНК, не находящихся под контролем свойс-

твенных им регуляторных элементов, может приводить к трудно

предсказуемым измененим метаболических процессов и сопровож-

даться функциональным дисбалансом. Современные представления

о структуре генома и его взаимодействиях с экзогенными ДНК и

вирусными последовательностями, часто используемыми в ка-

честве векторов для переноса генов (см. 9.2), могут оказать-

ся недостаточными для прогнозирования возможных нежелатель-

ных или неконтролируемых последствий такого вмешательства.

Поэтому при разработке программ генной терапии принципиаль-

ное значение имеют вопросы безопасности предлагаемых схем

лечения как для самого пациента, так и для популяции в целом

(Anderson, 1992; Miller, 1992). Важно, чтобы при проведении

испытаний ожидаемый лечебный эффект или возможность получе-

ния дополнительной полезной информации превосходили потенци-

альный риск предлагаемой процедуры. Неслучайно, в странах с

наиболее продвинутым уровнем исследований в этой области,

особенно в США, медицинские протоколы с использованием смыс-

ловых последовательностей ДНК подвергаются обязательной экс-

пертизе в соответствующих комитетах и комиссиях. Клинические

испытания предложенной генотерапевтической процедуры возмож-

ны только после ее одобрения соответствующим законодательно

утвержденным органом. В США таковыми являются: Консультатив-

ный Комитет по Рекомбинантным ДНК (Recombinant DNA Advisory

Committee - RAC), Комитет по лекарствам и пищевым продуктам

(Food and Drug Administration -FDA), с последующим обяза-

тельным утверждением проекта директором Национального Инсти-

тута Здоровья (National Institute of Health) (Miller, 1992;

Anderson, 1992; Culver, 1994). В Европе такие протоколы сос-

тавляются и утверждаются в соответствии с рекомендациями Ев-

ропейской Рабочей Группы по Переносу Генов и Генной Терапии

(European Working Group on Human Gene Transfer and Therapy)

(Cohen-Haguenauer, 1995). Программы генной терапии для кли-

нических испытаний должны включать следующие разделы: обос-

нование выбора нозологии для проведения курса генной тера-

пии; определение типа клеток, подлежащих генетической моди-

фикации; схему конструирования экзогенной ДНК; обоснование

биологической безопасности вводимой генной конструкции,

включающая опыты на культурах клеток и на модельных (транс-

генных) животных; разработку процедуры ее переноса в клетки

пациента; методы анализа экспрессии введенных генов; оценку

клинического (терапевтического) эффекта; возможные побочные

последствия и способы их предупреждения (Culver, 1993; Co-

hen-Haguenauer, 1995).

Важнейшим элементом в программе генной терапии является

анализ последствий проводимых процедур. Этот контроль прово-

дят на всех этапах терапии, причем исследования выполняют на

различных уровнях. Прежде всего, после переноса гена осу-

ществляют поиск модифицированных клеток в организме пациента

и следят за динамикой этих клеток в определенных тканях.

Этот поиск может быть облегчен при наличии маркерного гена в

конструкции. Присутствие последовательностей экзогенной ДНК

в модифицированных клетках чаще всего идентифицируют с по-

мощью ПЦР. На следующем этапе производят анализ экспрессии

введенных генов путем идентификации и количественной оценки

соответствующего РНК-транскрипта, либо белкового продукта

гена. В тех случаях, когда это возможно, проводят анализ

коррекции первичного биохимического дефекта. Затем, все по-

лученные данные сопоставляют с результатами комплексного ме-

дицинского обследования и вносят необходимые исправления и

добавления в проводимую схему лечения.

Раздел 9.2. Типы генотерапевтических вмешательств, вы-

бор клеток-мишеней.

Рассмотрим наиболее общие принципы, лежащие в основе

построения программ генной терапии. Итак, генная терапия

предполагает введение последовательностей ДНК в клетки-мише-

ни. Она проводится либо с целью коррекции наследственной па-

тологии, возникшей вследствие генетического дефекта, либо

для придания этим клеткам новых функций, способствующих уст-

ранению патологических процессов. В первом случае, в орга-

низм больного вводят нормально работающий гомолог дефектного

гена. Второй подход применяют при лечении, таких заболева-

ний, как опухоли или инфекции. В этих случаях вводят гены,

обладающие условным цитотоксическим эффектом или способству-

ющие формированию выраженного иммунного ответа. Мишенями для

таких генов служат пораженные ткани, иммунные клетки, специ-

фическим образом проникающие в эти ткани, либо предваритель-

но трансформированные in vitro другие клетки. Таким образом,

в зависимости от характера заболевания и предполагаемого ге-

нотерапевтического подхода объектом генетической трансфекции

могут служить самые разные соматические клетки, как несущие

дефектный ген, так и нормальные клетки, приобретающие тера-

певтические свойства после трансфекции. В зависимости от

способа введения экзогенных ДНК в геном пациента генная те-

рапия может проводиться либо в культуре клеток (ex vivo),

либо непосредственно в организме (in vivo). Клеточная генная

терапия или терапия ex vivo предполагает выделение и культи-

вирование специфических типов клеток пациента, введение в

них чужеродных генов, отбор трансфецированных клеток и реин-

фузию их тому же пациенту (Рис. 9.1). В настоящее время

большинство допущенных к клиническим испытаниям программ

генной терапии использует именно этот подход (Cul-

ver, 1994). Осуществление таких программ возможно лишь в

крупных специализированных центрах, требует больших матери-

альных затрат и высоких биотехнологий.

Генная терапия in vivo основана на прямом введении кло-

нированных и определенным образом упакованных последователь-

ностей ДНК в специфические ткани больного. При этом вводимые

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.