реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

копий в бактериальных клетках. Открытие плазмид связано с

изучением генетической природы антибиотикоустойчивости. Ока-

залось, что именно плазмиды могут нести гены, сообщающие

клеткам устойчивость к различным антибиотикам, и потеря

чувствительности инфекционных бактерий к их действию как раз

и происходит за счет отбора тех штаммов, в которых имеются

плазмиды с соответствующей генетической информацией. Заме-

тим, что присутствие плазмиды в бактериальной клетке вовсе

не обязательно для обеспечения ее жизнедеятельности, так как

при отсутствии антибиотиков в среде обитания бактерий штам-

мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды

имеют автономную систему контроля репликации, обеспечивающую

поддержание их количества в клетке на определенном уровне -

от одного до нескольких сотен плазмидных геномов на клетку.

Обычно для клонирования выбирают плазмиды с ослабленным

контролем репликации, что позволяет им накапливаться в клет-

ке в большом числе копий. Конструирование плазмидных клони-

рующих векторов заключается во внесении изменений в систему

контроля репликации и в добавлении или вырезании генов анти-

биотикоустойчивости или удобных для клонирования иных гене-

тических элементов: специфических сайтов рестрикции, инициа-

ции и регуляции транскрипции и т.п. Чаще всего для клониро-

вания используют плазмиды pBR322, ColE1 или их производные.

Кольцевую молекулу плазмидной ДНК можно легко перевести

в линейную форму путем единичного разрыва в месте локализа-

ции уникального сайта рестрикции. Присоединение (встраива-

ние, инсерция) фрагмента чужеродной ДНК к концам линейной

молекулы осуществляется с помощью специфических ферментов

-лигаз, после чего гибридная плазмида вновь принимает коль-

цевую форму. Разработаны достаточно простые и эффективные

методы трансформации бактерий, то есть искусственного введе-

ния плазмид в бактериальные клетки. При этом, присутствующие

в плазмидах гены антибиотикоустойчивости используют в ка-

честве маркеров трансформированных бактерий для их отбора на

соответствующих селективных средах. При размножении

трансформированных бактерий происходит увеличение числа ко-

пий инсертированного фрагмента ДНК. Таким образом, этот чу-

жеродный для бактерий генетический материал может быть полу-

чен, практически, в любых количествах. Выделенная из бакте-

рий плазмидная ДНК или изолированный из плазмиды инсертиро-

ванный фрагмент могут быть в дальнейшем использованы в ка-

честве ДНК-зондов.

Для некоторых целей в качестве клонирующих векторов

оказалось удобнее использовать фаги - бактериальные вирусы.

Фаговая ДНК существует только в линейной форме, поэтому при

ее рестрикции образуются два фрагмента, которые сшивают с

чужеродной ДНК с образованием химерного фага. Чисто техни-

чески эта операция проще, чем инсерция в плазмиду. Однако,

размеры встраимовой ДНК ограничены пакующей способностью го-

ловки фага. Поэтому при конструировании вектора вырезают

последовательности фаговой ДНК, не имеющие критического зна-

чения для жизнеобеспечения фага. Такой бактериофаг может су-

ществовать только в том случае, если в него встроена чуже-

родная ДНК, по размерам сопоставимая с вырезанной фаговой

ДНК. Наиболее удачные конструкции векторов были получены на

основе фага лямбда - лямбда gt10, лямбда gt11, лямбда Zap.

Многие проблемы молекулярной генетики успешно решаются

с использованием экспрессионных векторов, содержащих в своем

составе регуляторные последовательности, обеспечивающие син-

тез чужеродных белков в клетках хозяина. Так в случае лямбда

gt11 фаги могут быть выращены в, так называемых, репликатив-

ных условиях, обеспечивающих экспрессию инсертированной ДНК.

Так как обычно ДНК встраивают в район локализации маркерного

гена, позволяющего вести селекцию химерных фагов, то

экспрессироваться будет слитый белок, в котором часть поли-

пептидной цепи будет соответствовать маркерному белку, а

часть цепи будет транслироваться в соответствии с информаци-

ей, заключенной во встроенном фрагменте ДНК. Этот белок мо-

жет быть идентифицирован путем детекции фрагмента маркерного

белка либо с помощью антител к специфическим участкам, коди-

руемым чужеродной ДНК.

В последнее время большое распространение получило

клонирование в космидах - конструкциях, обьединяющих в себе

преимущества плазмид и фагов. Космиды получены на основе

плазмид, но в них введены генетические элементы фага лямбда,

отвечающие за упаковку ДНК в фаговой частице. Такие векторы

могут существовать не только в виде плазмид, но и в виде фа-

говых частиц in vitro. Космиды обладают большей клонирующей

способностью по сравнению с плазмидными и фаговыми векторами

и могут нести до 40-45 тысяч пар оснований инсертированной

ДНК. Все вышеперечисленные векторы используются для клониро-

вания в прокариотических системах.

Векторы, пригодные для направленного переноса в эука-

риотические клетки, конструируют на основе прокариотических

или дрожжевых плазмид - единственных плазмид, найденных в

клетках эукариот, а также используют различные эукариоти-

ческие вирусы, чаще всего ретровирусы, аденовирусы или аде-

ноассоциированные вирусы. При использовании плазмид в ка-

честве клонирующих векторов в них вводят вирусные последова-

тельности, ответственные за начало репликации. Введение век-

торов в эукариотические клетки часто осуществляют путем

ко-трансформации, то-есть одновременно вводят плазмиду и

сегмент чужеродной ДНК. Векторные последовательности, вве-

денные в клетки эукариот, могут сохраняться там в течение

нескольких дней в виде суперскрученных кольцевых молекул -

эписом. В редких случаях возможна интеграция экзогенной ДНК

в хромосомную ДНК. В этих случаях введенные последователь-

ности устойчиво сохраняются в геноме клеток хозяина и насле-

дуются по менделевскому типу (см. Глава VIII).

Для клонирования субхромосомальных фрагментов ДНК, со-

держащих целые гены, разработана система дрожжевых минихро-

мосом. Искусственные дрожжевые хромосомы (YAC - artificial

yeast chromosomes) конструирют на основе плазмидных векто-

ров, содержащих в своем составе известные центромерные и те-

ломерные последовательности хромосом дрожжей, необходимые

для поддержания и репликации векторов в клетках хозяина. Та-

кие системы способны удерживать фрагменты чужеродной ДНК

размером в несколько сотен тысяч и даже миллионов пар осно-

ваний.

Остановимся коротко на методах введения векторов в клетки

хозяина. Но прежде всего, определим основные термины. Как

уже упоминалось, введение плазмидной ДНК в бактериальные

клетки назвается трансформацией. Если перенос генов осущест-

вляется с помощью фага, то говорят о трансдукциии. Процесс

введения экзогенной ДНК в эукариотические клетки называется

трансфекцией. Все эти методы основаны на подборе условий,

облегчающих прохождение плазмидной или фаговой ДНК через

клеточные и ядерные мембраны. Для повышения проницаемости

мембран используют два разных подхода. В первом случае про-

водят обработку векторной ДНК и клеток хозяина буферными

растворами, повышающими проницаемость клеточных и ядерных

мембран (метод кальций-фосфатной преципитации,

DEAE-декстран-опосредованная трансфекция). Во втором случае

используют краткосрочное физическое воздействие на клетки

для создания в мембранах микропор, проходимых для макромоле-

кул ДНК (метод электропорации - воздействие высоковольтным

электрическим полем, "бомбардировка" частицами золота и

т.п.). Более подробно проблемы векторов и методы генетичес-

кой трансфрмации (трансдукции) рассмотрены в Главе IX. Воп-

росам молекулярного клонирования также посвящена обширная

литература (Гловер, 1988; 1989; Шишкин, Калинин, 1992; Мани-

атис и др., 1984; Дейвис, 1990; Sambrook et al., 1989).

1.5 Геномные и к-ДНК-овые библиотеки генов, их скрининг.

Рассмотрим более подробно методы выделения и идентифи-

кации фрагментов ДНК, необходимых для анализа или для

использования в качестве ДНК-зондов. Основным источником

этих фрагментов являются искусственным образом сконструиро-

ванные библиотеки генов, в которых осуществляют поиск или

скрининг нужных последовательностей ДНК разными методами в

зависимости от специфических особенностей этих последова-

тельностей. Библиотека генов это полный набор клонированных

перекрывающихся фрагментов ДНК, полученных в результате

рестрикции или механического разрезания тотальной ДНК, выде-

ленной из какого-либо специфического источника. В зависи-

мости от происхождения ДНК различают геномные и кДНК-овые

библиотеки генов. Для конструирования геномных библиотек ис-

пользуют ДНК, выделенную из тканей, культур клеток, из от-

дельных хромосом или из их фрагментов. При создании кДНК

-овых библиотек выделяют тотальную мРНК из тканей или куль-

тивируемых клеток, в которых заведомо экспрессируются инте-

ресующие исследователя гены. На следующем этапе методом об-

ратной транскрипции (РНК-ДНК) синтезируют кДНК. Затем её

разрезают и упаковывают в выбранный для клонирования вектор.

Схема конструирования геномных и кДНК-овых библиотек предс-

тавлена на рис.1.6. Как видно на схеме в геномных библиоте-

ках присутствуют не только кодирующие последовательности ге-

нов, но также несмысловые внутригенные последовательности -

интроны и межгенные участки ДНК, причем удельный вес некоди-

рующих фрагментов ДНК значительно выше. кДНК-овые библиотеки

состоят только из кодирующих - экзонных, областей генов. На-

иболее удобный размер инсертируемой ДНК сопоставим со сред-

ним размером гена млекопитающих и составляет 15 - 25 тысяч

пар оснований (kb). Оптимальный по размеру набор перекрываю-

щихся последовательностей геномной ДНК человека получается

после ее переваривания частощепящими рестриктазами Sau3a или

Mbo1. Информационная емкость каждой библиотеки, то есть ко-

личество клонов с различными инсертированными фрагментами

ДНК, определяется размерами исходного генома и необходи-

мостью присутствия каждой его последовательности хотя бы в

одном клоне. Поэтому достаточно представительные геномные

библиотеки млекопитающих обычно содержат не менее 8*10!5 -

10!6 различных клонов.

Чаще библиотеки конструируют на основе фаговых или

космидных клонирующих векторов, так как в таком виде легче

хранить большие количества химерных ДНК. Для создания библи-

отек генов человека особенно удобны векторы, полученные на

основе фага лямбда, такие как EMBL3 или EMBL4. Пакующая

способность этих векторов от 9 до 23 кб, они содержат много

удобных клонирующих сайтов, так что для инсерции ДНК могут

быть использованы разные рестриктазы. Кроме того, эти векто-

ры не содержат последовательностей плазмид, наиболее часто

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.