реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

мутации). Наибольшим повреждающим действием обладают мута-

ции, приводящие либо к образованию бессмысленного белка, ли-

бо к преждевременному окончанию его синтеза, то есть делеции

или инсерции, не кратные трем нуклеотидам и потому вызываю-

щие сдвиг рамки считывания, а также нонсенс мутации - замены

нуклеотидов, при которых образуются терминирующие стоп-кодо-

ны. Проявление таких мутаций зависит от их внутригенной ло-

кализации. Чем ближе мутации к 5' концу гена, то есть к на-

чалу транскрипции, тем короче их белковые продукты. Такие

абортивные (truncated) белки неспособны к модификациям и

быстро деградируют.

Фенотипическое проявление замен нуклеотидов в кодо-

нах, так нназываемых миссенс мутаций, зависит от природы

соответствующих аминокислотных замен в белке и от функцио-

нальной значимости того домена, в котором это произошло.

Так, замены аминокислот в активных центрах белков могут соп-

ровождаться полной потерей его функциональной активности,

тогда как даже значительно более серьезные нарушения в дру-

гих частях белка часто оказывают существенно меньшее влияние

на фенотип. Мутации на стыке экзонов и интронов (так называ-

емые сплайсинговые мутации) часто нарушают процессинг пер-

вичного РНК-транскрипта, в результате чего происходит либо

неправильное вырезание соответствующей интронной области и

трансляция бессмысленного удлиненного белка, не защищенного

от протеолитического действия внутриклеточных ферментов, ли-

бо вырезание экзонов и образование делетированного белка. В

обоих случаях сплайсинговые мутации, как правило , обуслав-

ливают тяжелое течение болезни. Нарушения в регуляторных об-

ластях генов сопровождаются количественными изменениями

соответствующего продукта и не затрагивают структуры и функ-

циональной активности белка. Проявление таких мутаций опре-

деляется, в конечном счете, пороговым уровнем концентрации

белка, при котором его функция еще сохраняется. Как правило,

регуляторные мутации менее серьезны и обладают более выра-

женным плейотропным (множественым) эффектом по сравнению с

мутациями структурных генов.

Относительно недавно выявлен новый класс так называемых

динамических мутаций, или мутаций экспансии, связанных с

нестабильностью числа тринуклеотидных повторов в функцио-

нально значимых частях генов. Многие тринуклеотидные повто-

ры, локализованные в транскрибируемых или регуляторных об-

ластях генов, характеризуются высоким уровнем популяционной

изменчивости, в пределах которого не наблюдается фенотипи-

ческих нарушений (Willems,1994). Болезнь развивается лишь

тогда, когда число повторов в этих сайтах превосходит опре-

деленный критический уровень. Наследование таких мутаций,

как правило, отличается от классического Менделевского ти-

па. Для них характерны: различная пенетрантность в сочетании

с неполным доминированием; геномный импринтинг (различия фе-

нотипических проявлений в зависимости от того, получена му-

тация от матери или от отца) и феномен антиципации - на-

растание тяжести проявления заболевания в последующих поко-

лениях (Willems,1994).

Классическим примером мутаций экспансии является синд-

ром ломкой Х-хромосомы (FraXA), обусловленный присутствием

удлиненных CCG повторов в 5'-нетранслируемой регуляторной

области FMR1-гена (Xq27.3). Аналогичные нестабильные повторы

обнаружены еще в трех ломких сайтах, причем два из них

(FraXE и FraXF) расположены на очень небольшом расстоянии

дистальнее FraXA. Во всех четырех случаях CCG-повторы лока-

лизованы вблизи от CpG островков, при этом увеличение числа

копий триплетов выше определенного порогового уровня сопро-

вождается гиперметилированием всей регуляторной GC-богатой

области, вследствие чего и происходит резкое снижение и

полное выключение транскрипционной активности - мутации по

типу " утраты функции" (loss-of-functions). Таким образом,

область CCG-повторов в этих локусах можно рассматривать, как

своеобразный cis-действующий элемент транскрипции (Willems,

1994, Mandel,1994).

Другой тип динамических мутаций описан для 6-ти раз-

личных тяжелых аутосомно-доминантных нейродегенеративных

расстройств (см. Главу X). Для всех этих заболеваний обнару-

жено присутствие удлиненных CAG-повторов в открытой рамке

считывания (ORF). Эти повторы транслируются в протяженные

полиглютаминовые треки, предположительно локализованные в

ДНК- связывающих доменах соответствующих белковых продуктов.

В результате белковые молекулы приобретают новые свойства,

нарушающие нормальные метаболические связи. Таким образом,

нестабильные CAG-повторы можно рассматривать, как

gain-of-function - мутации. Интенсивно обсуждается также

возможность участия амплификации CAG-повторов в формировании

предрасположенности к таким частым расстройствам центральной

нервной системы, как шизофрения и маниакально-депрессивный

психоз. Примером третьей группы болезней экспансии служит

миотоническая дистрофия. При этом заболевании огромные CTG

(или CAG) повторы локализованы в 3'-нетранслируемой области

гена. Они также рассматриваются, как факторы, нарушающие

нуклеосомную организацию гена и подавляющие его транскрипцию

Более подробно болезни экспансии рассмотрены в Главе X.

Раздел 4.2. Генетическая гетерогенность наследственных

заболеваний.

Одним из важных обобщающих итогов молекулярно-генети-

ческих исследований моногенных болезней явилось доказа-

тельство их генетической гетерогенности. Последняя может

быть вызвана разными причинами. Прежде всего, оказалось, что

один и тот же биохимический эффект (фенотип) может быть

обусловлен мутациями в разных генах. С другой стороны, мута-

ции одного и того же гена, как установлено, могут приводить

к совершенно разным клиническим проявлениям. Например, мута-

ции гена адренорецептора, сцепленого с Х-хромосомой, могут

быть причиной нейродегенеративного заболевания - болезни

Кеннеди, если они захватывают область тринуклеотидных повто-

ров (Глава X), и в то же время приводить к синдрому тестику-

лярной феминизации, то есть нарушениям половой дифференци-

ровки, если они затрагивают другие последовательности этого

же гена. Крайним выражением такой гетерогенности может слу-

жить пример с геном рецептора тирозинкиназы -RET, различные

мутации которого могут приводить к 4-м совершенно различным

наследственным синдромам, таким как семейная медуллярная

карцинома щитовидной железы, болезнь Гиршпрунга, множествен-

ная эндокринная неоплазия тип 2А (МЭН-2А) и тип 2B (МЭН-2B)

(Hayningen,1994). Подобные фенотипические разнообразия про-

явлений мутаций одного и того же гена получили название ал-

лельных серий. Термин используется уже около 20 лет для

описания групп из нескольких моногенных наследственных забо-

леваний, клинические проявления которых позволяют предпола-

гать их связь с разными генами, в то время как биохимические

и/или генетические исследования доказывают их аллельную при-

роду, то есть в основе их патогенеза лежат разные мутации

одного и того же гена.

В настоящее время известно более 100 таких болезней

(Romeo, McKusick, 1994). Для каждого заболевания из подобной

серии аллелизм мутаций уже доказан на молекулярном уровне.

Причины подобного фенотипического разнообразия могут быть

различными: (1) локализация мутантных аллелей в функциональ-

но разных доменах белка; (2) принципиально разный механизм

действия мутаций (loss-of-function, gain-of-function); (3)

присутствие в том же гене модифицирующего мутантного аллеля

или полиморфизма и (4) влияние генетического окружения на

проявление мутантного аллеля, то есть его взаимодействие с

определенными аллелями гена-модификатора или даже нескольки-

ми такими генами. Углубленный молекулярно-генетический ана-

лиз практически каждого наследственного заболевания указыва-

ет на его значительную генетическую гетерогенность, связан-

ную с различными мутациями гена. Некоторые примеры аллельных

серий и генетической гетерогенности заболеваний будут

рассмотрены более подробно в Главе X.

Раздел 4.3 Номенклатура мутаций.

Для практических целей и, главным образом, для чтения

научной литературы, важно знать, как записываются мутации.

До недавнего времени единой номенклатуры записи мутаций не

существовало. В 1992 г. двумя американскими учеными Артуром

Боде и Лап-Чи Тсуи была предложена универсальная стандартная

система для обозначения разных мутаций (Beudet, Lap-Сhee

Tsui, 1993). Она рассчитана как на запись аминокислотных за-

мен в белках, так и на нуклеотидные замены и перестановки в

ДНК. В первом случае, каждой аминокислоте соответствует од-

нобуквенный символ (Табл.4.1), слева записывается нормальный

вариант аминокислоты, справа - мутантный, а расположенный в

центре номер соответствует месту замены в цепочке первичного

продукта трансляции. Например, запись D44G означает замену

аспарагина на глицин в 44-м положении полипептидной цепи, а

A655E - аланина на глутамин в пложении 655 белкового продук-

та. Так записываются различные варианты аминокислотных замен

при миссенс мутациях. Буквой Х обозначается место остановки

синтеза полипептидной цепи при нонсенс мутациях. Например,

Q39X означает замену глицина на стоп сигнал в 39-м кодоне, а

W1282X - триптофан-триплета на стоп-кодон в положении 1282.

Отсутвие одной или нескольких аминокислот обозначают значком

^-дельта. Так, наиболее частая мутация, приводящая к муко-

висцидозу- ^F508 - означает отсутствие фенилаланина в 508

положении трансмембранного регуляторного белка муковисцидо-

за. Полиморфизмы, связанные с равноценной по функциональной

значимости заменой аминокислот, записывают через черточку.

Например, M/V470 - метионин или валин в положении 470.

Таблица 4.1. Символы аминокмслот.

------------------------T-----------------T--------------¬

¦ Аминокислоты 1¦ 0 Трехбуквенный 1¦ 0

Однобуквенный 1¦

¦ 1¦ 0 символ 1¦ 0 символ 1

¦

+-----------------------+-----------------+--------------+

¦ Аланин 1¦ 0 Ala 1¦ 0 A 1

¦

¦ Аргинин 1¦ 0 Arg 1¦ 0 R 1

¦

¦ Аспарагин 1¦ 0 Asn 1¦ 0 N 1

¦

¦ Аспарагиновая кислота 1¦ 0 Asp 1¦ 0 D 1

¦

¦ Asn и/или Asp 1¦ 0 Asx 1¦ 0 B 1

¦

¦ Цистеин 1¦ 0 Cys 1¦ 0 C 1

¦

¦ Глутамин 1¦ 0 Gln 1¦ 0 Q 1

¦

¦ Глутаминовая кислота 1¦ 0 Glu 1¦ 0 E 1

¦

¦ Gln и/или Glu 1¦ 0 Glx 1¦ 0 Z 1

¦

¦ Глицин 1¦ 0 Gly 1¦ 0 G 1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.