реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Диплом: Метаболические сдвиги в организме, происходящие вследствие сахарного диабета

реферат

вания. В результате повторного фосфорилирования, происходящего под

влиянием гексокиназы, образуется глюкозо-6-фосфат, что делает глюкозу

вновь физиологически активной. При повторном фосфорилировании, как

и на первом этапе, активность гексокиназы повышается инсулином.

Значение пентозного цикла в обмене веществ велико, ибо этот цикл

представляет собой единственный источник рибозо-5-фосфата, который

используется для синтеза РНК. При окислении глюкозы в пенторном цик-

ле образуется большая часть восстановленного НАДФИ + Н+, необходи-мого для

синтеза жирных кислот (В.В.Потемкин, 1978).

Причиной возникновения резкой гипергликемии при СД заключает-

ся, как уже указывалось, в недостатке инсулина, обеспечивающего, с од-

ной стороны, нормальную проницаемость клеточных мембран скелетных

и сердечной мышц, а также некоторых других тканей по отношению к глюкозе, с

другой стороны, регулирующего активность ряда ферментов печени и

уравновешивающего влияния на нее группы диабеточных гормо-

нов.

Наиболее легким нарушением углеводного обмена при диабете является

снижение талерантности к глюкозе на фоне норамльной концентрации ее в крови

натощак. В этих условиях принятая глюкоза не вызывает аде-кватной реакции

инсулина и поэтому избегает поглощения печенью и мед-

ленее метаболизируется периферическими тканями. С количественной

точки зрения, если у здорового человека печень утилизирует 60% из 100%

принятой внутрь глюкозы, то при нередко выраженном диабете только 40% этого

количества метаболизируется печенью.

При абсолютной или относительной недостаточности инсулина в исход-ном

состоянии повышается уровень глюкозы натощак. У таких больных

продукция глюкозы обычно не изменена или незначительно повышена

(Wahren J. et all, 1972) тогда как функциональный кругооборот глюкозы

(отношение утилизации глюкозы к ее концентрации в плазме) снижена.

Кроме того, вдвое повышается относительная роль глюконеогенеза в об-

щей продукции глюкозы печенью. Повышение глюконеогенеза при уме-ренной

недостаточности инсулина согласуется с тем, что для угнетения

глюконеогенеза требуется сравнительно больше количества инсулина, чем для

угнетения гликогенелиза (Felig P. et all, 1971).

В крайней ситуации полной недостаточности функции В - клеток даже вы-

раженная гипергликемия натощак не может вызвать секреторного ответа

этих клеток. В отсутствие «сдерживающего влияния, оказываемого исход-ным

количеством инсулина» продукция глюкозы печенью в 3 раза и более

превышает норму главным образом за счет ускорения глюконеогенеза. Хотя почки

также содержат ферменты, необходимые для глюконеогенеза,

при диабете у человека не наблюдается дополнительного поступления глюкозы в

кровоток из почек (Felig P. et all, 1975). Клиническим эквива-лентом этих

нарушений является выраженная гипергликемия, наблюда-емая при диабетическом

кетоацидозе или гиперсмолярной коме, не сопро-

вождаемой кетозом.

Одним из проявлений нарушения углеводного обмена при сахарном

диабете является глюкозерия. В моче здорового человека сахара нет, т.к.

он реабсорбируется почечными канальцами из протекающей через них

«первичной» мочи. Реабсорбция глюкозы по С.М.Лейтесу может прохо-дить только

после ее фосфорилирования, что осуществляется ферментом

гексокиназой. После фосфорилирования глюкоза может поступать из по-чек в

кровь лишь в том случае, если на нее воздействует фосфатоза. Меха-

низм действия последней заключается в отщеплении от глюкозы фосфор-

ной кислоты. При инсулиновой недостаточности вследствие нарушения

процессов фосфорилирования глюкозы реабсорбция ее снижается.

Гипергликемия ведет к обезвоживанию тканей. Это происходит вследствие

повышения осмотического давления крови и ее влияния на

ЦНС (полидипсия), нарушается нормальный клеточный обмен и усилива-

ется диурез (полиурия) (В.В.Потемкин, 1978).

1.2.4. НАРУШЕНИЕ ЛИПИДНОГО ОБМЕНА В РЕЗУЛЬТАТЕ

ПАТОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ГОРМОНОВ.

Основным запасным источником энергии в организме являются жиры.

По мере необходимости жиры из жирной ткани поступают в виде неэсте-

рифицированных (свободных) жирных кислот (СЖК) в кровь, а затем в пе

чень. После распада в печени жиры используются тканями в качестве

энергетического материала. Триглицериды, поступившие в кровь из жиро-

вых депо, комплексируются в печени с А - и В - глобулинами и выходят из

нее в составе А - и В - липопротеидов (В.В.Потемкин, 1978).

Нарушение липидного обмена возникает при диабете чаще вторич-но, в результате

первичных изменений в обмене углеводов.

При декомпенсированном диабете часто повышается содержание в

плазме СЖК, триглицеридов и холестерина. Распространенность гипер-гликемии

при ИЗСД может достигать 50% (Chase P.H. et all, 1976).

Увеличение концентрации СЖК является следствием их усиленного вы-свобождения

из жировых депо, т.к. скорость образования новых жирных

кислот у больных диабетом снижена. Таким образом, при диабете увели-чен

приток СЖК из жировых депо в печень и другие ткани. Усиление ли-

полиза происходит в результате выпадения нормального тормозного вли-

яния инсулина на гормончувствительную липозу в жировой ткани. Кроме

того снижение утилизации глюкозы приводит к уменьшению содержания

глицерин-3-фосфата, необходимого для реэстерификации жирных кислот

в самой жировой клетке.

Механизм гиперглицеридемии при диабете более сложен. В норме богатые

триглицеридами липопротеины попадают в плазму либо в виде

хиломикронов, образующихся из жира, содержащегося в пище, либо в ви-де

липопротеинов очень низкой плотности (ЛПОИП), синтезируемых в пе-

чени и кишечнике. Высвобождение жирных кислот из триглициридов обо-их видов и

их поглощение жировой тканью зависят от липопротеиновой

липазы, содержащейся в эндотелии капилляров и активизирующейся ин-сулином.

При не леченном или недостаточно компенсированном диабете

снижение активности липопротеиновой липазы обусловливает повыше-ние уровня

триглицеридов в плазме, что влияет на содержание хиломик-

ронов, ЛПОНП или чаще обоих кланов липопротеинов. В повышении син-

теза триглицеридов может играть роль и увеличенная доставка жирных

кислот в печень, поскольку в этом органе образование эфиров между жир-

ными кислотами и глицерином при диабете не нарушается. В результате у

больного декомпенсированным диабетом, несмотря на практически пол-ное

прекращение синтеза жирных кислот, может увеличиваться перегру-женная жирами

печень и повышаться уровень триглицеридов в крови

(Brunrell J.D. et all, 1978).

Закономерная зависимость между контролем гликемии и уровнем холе-стерина в

сыворотке отсутствует. Основным остается тот факт, что гипер-

холестеринемия является, вероятно, одним из факторов, обусловлива-ющих

ускорение развития атеросклероза при диабете.

При резко выраженной недостаточности инсулина изменения жиро-вого обмена в

жировой ткани, печени и мышцах обусловливают накопле-

ние кетоновых тел (В - оксибутират, ацетоацетат и ацетон). Нормальный

«сдерживающий» эффект инсулина на кетонемию обусловливается его способностью

тормозить липолиз, снижать окисление жирных кислот до

кетоновых тел в печени и стимулировать утилизацию последних мышца-

ми. При тяжелой инсулиновой недостаточности увеличивается как до-ставка

жирных кислот в печень, так и активность фермента, ограничива-

ющего скорость окисления жирных кислот в данном органе (ацилкарни-

тинтрансфераза). Изменения активности этого фермента в печени опосре-

дуется повышением содержания карнитина и снижением уровня малония -

КОА (первый, промежуточный продукт синтеза жирных кислот), который

в норме ингибирует ацилкарнитинтрансферазу.

1.2.5. НАРУШЕНИЕ БЕЛКОВОГО ОБМЕНА В РЕЗУЛЬТАТЕ

ПАТОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ГОРМОНА.

Выраженный дефицит инсулина сопровождается отрицательным азотис-

тым балансом и резким белковым истощением. При ювенильном инсулин-

зависимом диабете частым осложнением в случае некомпенсированного заболевания

является задержка роста. Такие нарушения не вызывают удивления, ибо инсулин,

если он присутствует в нормальных количествах,

стимулирует синтез белка и поглощение аминокислот мышцами и тормо-зит расход

белка и высвобождение аминокислот мышечной тканью. Изме-

нения белкового обмена сказываются и на глюконеогенезе, поскольку из-быточная

продукция глюкозы при диабете, сопровождающемся кетозом отчасти зависит от

повышения утилизации образующихся из белка пред-шественников.

При инсулинозависимом диабете с легко или умеренно выраженной ги-пергликемией

изменяется содержание аминокислот в крови, их поглоще-ние печенью и

высвобождение мышцами. При спонтанном диабете у чело-

века неоднократно отмечали снижение концентрации (аланина) в плазме

и повышение концентрации аминокислот. Несмотря на снижение уровня

аланина в плазме, поглощение этой глюкогенной аминокислоты и других

предшественников глюкозы печенью увеличивается в 2 раза и более

(Wahren J., 1972). Вследствие такого повышения поглощения субстратов на долю

глюконеогенеза приходится более 30-40% от общей продукции

глюкозы печенью, тогда как у здорового человека эта величина составля-ет 15-

20%. Поскольку содержание аланина в крови при диабете снижает-ся, увеличение

его поглощения печенью обусловливается повышением

фракционной экстракции этой аминокислоты. В отсутствии нормального

«сдерживающего» эффекта инсулина на глюконеогенез печень выступает

в роли сифона, снижающего концентрацию аланина в артериальной кро-ви.

У больных диабетом количество азотистых продуктов в мышце пос-ле приема

белковой пищи восстанавливается труднее, чем в норме. В от-

личие от интенсивного и длительного поглощения аминокислот с раветв-

ленной цепью мышичной тканью сопровождающее прием белковой пищи

у здорового человека, у больных диабетом наблюдается лишь транзитор-ное

поглощение их. Вследствие этого снижается общее поглощение амино-

кислот мышцами, а уровень аминокислот с разветвленной цепью в плазме

после приема белковой пищи чрезмерно повышается (Wahren J. et all, 1976). Это

согласуется с известным стимулирующим влиянием инсулина на поглощение мышцами

аминокислот, особенно с разветвленной цепью

увеличение концентрации в артериальной крови, а снижение поглощения

аминокислот после приема белковой пищи указывают на то, что диабет

характеризуется нарушением не только к глюкозе, но и к белку. Наруше-ния

белкового обмена при диабете усугубляются тем, что аминокислоты,

захваченные мышечной тканью, не включаются в белок, а преимущест-венно

распадаются (Felig P., 1985).

Торможение синтеза белка из аминокислот является предпосылкой для

образования из них углеводов. При сахарном диабете образование углево-

дов из белка, значительно увеличивается. Неоглюкогенез из белка возрас-

тает под влиянием АКТГ и глюкокартикоидов.

Изменение нейроэндокринной регуляции обменных процессов приводит при СД и к

нарушению белкового состава плазмы крови. Это выражается

в уменьшении содержания альбуминов, повышении альфа-2, В- и Y-глобу-

линов. Нарушается обмен гликопротеидов, что проявляется в повышении

в сыворотке крови альфа-2-гликопротеидов, а также гексод, связанных с

белками. Нарушение обмена гликопротеидов обусловлено, с одной сторо-ны,

дефицитом инсулина, а с другой - нарушением функции гипофиза, над-почечников

и половых желез.

В процессе превращения белка в углеводы образуется аммиак, моче-

вина и другие продукты распада. В связи с этим при не леченном или де-

компенсированном СД возникает гиперазотемы с последующей гиперазо-турией.

Последняя обусловлена усиленным образованием аммиака как в

печени, так и в почках из глютамина.

2.2.1 ОПРЕДЕЛЕНИЕ ГЕМОГЛОБИНА.

Принцип: гемоглобин окисляют в метгемоглобин окисляют железосинеродистым

калием (красная кровяная соль); образующийся с ацетонциангидрином окрашенный

циан-метгемоглобин определяют как колориметрический.

Реактив: Трансформирующий раствор: ацетонциангидрин – 0,5 мг.; калий

железосинеродистый – 0,2 г.; натрия гидрокорбанат – 1 г.; дистиллированная

вода до 1 л. Раствор желтого цвета, прозрачный.

Калибровочный раствор гемоглобин цианида.

Специальное оборудование: фотоэлектроколориметр (ФЭК-56М).

Ход определения: В пробирку к 5 мл трансформирующего раствора добавляют 0,02

мл крови (разведение в 251 раз). Содержимое пробирки тщательно перемешивают и

оставляют стоять 10 мин. Измеряют на ФЭКе при длине волны 500-560 нм (зелёный

светофильтр) в кювете с толщиной слоя 1 см против холостой пробы

(трансформирующий р-р.). Измеряют при тех же условиях в стандартный раствор.

Расчет содержания гемоглобина производят по калибровочному графику,

построенному по стандартному раствору гемиглобинцианида, или по формуле:

Диплом: Метаболические сдвиги в организме, происходящие вследствие сахарного диабета , где

Страницы: 1, 2, 3, 4, 5, 6


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.